An improved nonsingular adaptive super twisting sliding mode controller for quadcopter
Nardos Belay Abera,
Chala Merga Abdissa and
Lebsework Negash Lemma
PLOS ONE, 2024, vol. 19, issue 10, 1-28
Abstract:
This paper presents an improved nonsingular adaptive super twisting sliding mode control for tracking of a quadrotor system in the presence of external disturbances and uncertainty. The initial step involves developing a dynamic model for the quadrotor that is free from singularities, achieved through the utilization of the Newton-Quaternion formalism. Then, the super twisting algorithm is used to develop a novel sliding mode control that mitigates chattering. Particle Swarm Optimization (PSO) is employed for the adjustment of the controller gains. Moreover, to maintain stable control of the quadcopter, even in scenarios where the upper limit of disturbances is unknown, an adaptive rule grounded in Lyapunov stability is applied. Simulation results demonstrate that the proposed controller reduces tracking errors to 0.1% for roll, 0.05% for pitch, and 2.2% for altitude, outperforming other state-of-the-art sliding mode controllers. Additionally, the proposed controller effectively rejects disturbances, maintaining minimal steady-state errors of 0.01° for roll, 0.02° for pitch, and 0.001° for yaw, significantly better than conventional controllers. These results highlight tracking and disturbance rejection capabilities of the proposed controller, making its real-time implementation for quadrotor Unmanned Aerial Vehicles (UAVs) feasible.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309098 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 09098&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0309098
DOI: 10.1371/journal.pone.0309098
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().