Joint-outcome prediction markets for climate risks
Mark S Roulston and
Kim Kaivanto
PLOS ONE, 2024, vol. 19, issue 8, 1-14
Abstract:
Predicting future climate requires the integration of knowledge and expertise from a wide range of disciplines. Predictions must account for climate-change mitigation policies which may depend on climate predictions. This interdependency, or “circularity”, means that climate predictions must be conditioned on emissions of greenhouse gases (GHGs). Long-range forecasts also suffer from information asymmetry because users cannot use track records to judge the skill of providers. The problems of aggregation, circularity, and information asymmetry can be addressed using prediction markets with joint-outcome spaces, allowing simultaneous forecasts of GHG concentrations and temperature. The viability of prediction markets with highly granular, joint-outcome spaces was tested with markets for monthly UK rainfall and temperature. The experiments demonstrate these markets can aggregate the judgments of experts with relevant expertise, and suggest similarly structured markets, with longer horizons, could provide a mechanism to produce credible forecasts of climate-related risks for policy making, planning, and risk disclosure.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309164 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 09164&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0309164
DOI: 10.1371/journal.pone.0309164
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().