EconPapers    
Economics at your fingertips  
 

Enhancing multiclass COVID-19 prediction with ESN-MDFS: Extreme smart network using mean dropout feature selection technique

Saghir Ahmed, Basit Raza, Lal Hussain, Touseef Sadiq and Ashit Kumar Dutta

PLOS ONE, 2024, vol. 19, issue 11, 1-31

Abstract: Deep learning and artificial intelligence offer promising tools for improving the accuracy and efficiency of diagnosing various lung conditions using portable chest x-rays (CXRs). This study explores this potential by leveraging a large dataset containing over 6,000 CXR images from publicly available sources. These images encompass COVID-19 cases, normal cases, and patients with viral or bacterial pneumonia. The research proposes a novel approach called "Enhancing COVID Prediction with ESN-MDFS" that utilizes a combination of an Extreme Smart Network (ESN) and a Mean Dropout Feature Selection Technique (MDFS). This study aimed to enhance multi-class lung condition detection in portable chest X-rays by combining static texture features with dynamic deep learning features extracted from a pre-trained VGG-16 model. To optimize performance, preprocessing, data imbalance, and hyperparameter tuning were meticulously addressed. The proposed ESN-MDFS model achieved a peak accuracy of 96.18% with an AUC of 1.00 in a six-fold cross-validation. Our findings demonstrate the model’s superior ability to differentiate between COVID-19, bacterial pneumonia, viral pneumonia, and normal conditions, promising significant advancements in diagnostic accuracy and efficiency.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310011 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10011&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0310011

DOI: 10.1371/journal.pone.0310011

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0310011