EconPapers    
Economics at your fingertips  
 

Price prediction of polyester yarn based on multiple linear regression model

Wenyi Qiu, Qingjun Mao and Chen Liu

PLOS ONE, 2024, vol. 19, issue 9, 1-16

Abstract: China’s polyester textile industry is one of the notable contributors to national economy. This paper takes polyester yarn, core raw material in polyester textile industry chain, as research object, and deeply explores its price indicators and risk hedging mechanisms through multiple linear regression models and Holt-Winters approaches. It is worth mentioning that with continuous development of digital technology, digital transformation of production lines and warehouses has become an important development feature in various industries. This study also actively complies with this trend, and innovatively incorporates the upstream and downstream production line start-up rates into price prediction model. Through this initiative, we can more comprehensively consider the impact of supply and demand changes on price of polyester yarn, thus making prediction results more closely reflect the actual market situation. This quantitative analysis method undoubtedly provides new ideas for enterprises to better grasp market dynamics in digital era.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310355 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10355&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0310355

DOI: 10.1371/journal.pone.0310355

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0310355