Optimization of surface roughness for titanium alloy based on multi-strategy fusion snake algorithm
Nanqi Li,
ZuEn Shang,
Yang Zhao,
Hui Wang and
Qiyuan Min
PLOS ONE, 2025, vol. 20, issue 1, 1-24
Abstract:
Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality. The optimization objective is surface roughness. Initially, a prediction model for titanium alloy milling surface roughness is established using the response surface method to ensure continuous prediction. Subsequently, the snake algorithm with multi-strategy fusion is introduced. Population initialization employs an orthogonal matrix strategy, enhancing population diversity and distribution. A dynamic adaptive mechanism replaces the original static mechanism for optimizing food quantity and temperature, accelerating convergence. Joint reverse strategy aids in selecting and generating individuals with higher fitness, fortifying the algorithm against local optima. Experimental results across five benchmarks employing various optimization algorithms demonstrate the superiority of the MSSO algorithm in convergence speed and accuracy. Finally, the multi-strategy snake algorithm optimizes the objective equation, with milling parameter experiments revealing a 55.7 percent increase in surface roughness of Ti64 compared to pre-optimization levels. This highlights the effectiveness of the proposed method in enhancing surface quality.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310365 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10365&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0310365
DOI: 10.1371/journal.pone.0310365
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().