EconPapers    
Economics at your fingertips  
 

Optimization design of centrifugal impeller based on Bezier surface and FFD space grid parameterization

Yesong Wang, Zixuan Sun, Jisheng Liu, Manxian Liu and Yong Zhou

PLOS ONE, 2024, vol. 19, issue 11, 1-29

Abstract: To enhance the aerodynamic performance of centrifugal impellers, this study presents an advanced optimization design methodology. This methodology addresses the challenges associated with numerous design variables, inflexible configurations, and low optimization efficiency. We propose two distinct spline function parameterization techniques: a global mapping model for Bezier surfaces and a local mapping model for Free-Form Deformation (FFD) control bodies. We investigate the impact of these parameterization methods on blade geometry configuration and aerodynamic performance. By integrating these two parameterization approaches with multi-objective evolutionary algorithms and Computational Fluid Dynamics (CFD) techniques, we enable global and local optimization of centrifugal compressor blades. The optimization results demonstrate a 1.77% enhancement in isentropic efficiency under rated operating conditions, a 7.8% increase in surge margin, a 1.6% improvement in isentropic efficiency under normal operating conditions, and an 11.8% enhancement in surge margin. Through two optimization stages, the optimization space for blade geometry is thoroughly explored, enhancing solution quality and contributing to the advancement of impeller mechanical optimization design theory.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310792 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10792&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0310792

DOI: 10.1371/journal.pone.0310792

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0310792