EconPapers    
Economics at your fingertips  
 

How strong is strong? The challenge of interpreting network edge weights

Zachary P Neal

PLOS ONE, 2024, vol. 19, issue 10, 1-11

Abstract: Weighted networks are information-rich and highly-flexible, but they can be difficult to analyze because the interpretation of edges weights is often ambiguous. Specifically, the meaning of a given edge’s weight is locally contingent, so that a given weight may be strong for one dyad, but weak for other dyad, even in the same network. I use backbone models to distinguish strong and weak edges in a corpus of 110 weighted networks, and used the results to examine the magnitude of this ambiguity. Although strong edges have larger weights than weak edges on average, a large fraction of edges’ weights provide ambiguous information about whether it is strong or weak. Based on these results, I recommend that strong edges should be identified by applying an appropriate backbone model, and that once strong edges have been identified using a backbone model, their original weights should not be directly interpreted or used in subsequent analysis.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311614 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11614&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0311614

DOI: 10.1371/journal.pone.0311614

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0311614