EconPapers    
Economics at your fingertips  
 

Multi-feature fusion based face forgery detection with local and global characteristics

Yuanqing Ding, Fanliang Bu, Hanming Zhai, Zhiwen Hou and Yifan Wang

PLOS ONE, 2024, vol. 19, issue 10, 1-18

Abstract: The malicious use of deepfake videos seriously affects information security and brings great harm to society. Currently, deepfake videos are mainly generated based on deep learning methods, which are difficult to be recognized by the naked eye, therefore, it is of great significance to study accurate and efficient deepfake video detection techniques. Most of the existing detection methods focus on analyzing the discriminative information in a specific feature domain for classification from a local or global perspective. Such detection methods based on a single type feature have certain limitations in practical applications. In this paper, we propose a deepfake detection method with the ability to comprehensively analyze the forgery face features, which integrates features in the space domain, noise domain, and frequency domain, and uses the Inception Transformer to learn the mix of global and local information dynamically. We evaluate the proposed method on the DFDC, Celeb-DF, and FaceForensic++ benchmark datasets. Extensive experiments verify the effectiveness and good generalization of the proposed method. Compared with the optimal model, the proposed method with a small number of parameters does not use pre-training, distillation, or assembly, but still achieves competitive performance. The ablation experiments evaluate the role of each component.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311720 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11720&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0311720

DOI: 10.1371/journal.pone.0311720

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0311720