EconPapers    
Economics at your fingertips  
 

Research on state perception of scraper conveyor based on one-dimensional convolutional neural network

Jie Lu, Zhenlin Liu, Chenhui Han, Zhiqiang Yang, Jialu Zheng and Wangjie Zhang

PLOS ONE, 2024, vol. 19, issue 10, 1-16

Abstract: Addressing the challenges of current scraper conveyor health assessments being influenced by expert knowledge and the relative difficulty in establishing degradation models for equipment, this study proposed a method for assessing the health status of scraper conveyors based on one-dimensional convolutional neural networks (1DCNN). The approach utilizes four preprocessed monitoring signals representing different health states of the scraper conveyor as input sources. Through multiple transformations of the data using a constructed one-dimensional convolutional neural network model, it extracts effective features from the data and establishes a mapping relationship between input data and equipment health status. This enables the recognition of the health status of the scraper conveyor. Comparative experimental analysis indicates that the proposed method can effectively identify the health status of the scraper conveyor, achieving an accuracy rate of 98.9%. This method provides an effective means and technical support for the subsequent health management of scraper conveyors in coal mining fully mechanized workfaces.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312229 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12229&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312229

DOI: 10.1371/journal.pone.0312229

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0312229