EconPapers    
Economics at your fingertips  
 

Postgraduate psychological stress detection from social media using BERT-Fused model

Muni Zhuang, Dongsheng Cheng, Xin Lu and Xu Tan

PLOS ONE, 2024, vol. 19, issue 10, 1-21

Abstract: Postgraduate students face various academic, personal, and social stressors that increase their risk of anxiety, depression, and suicide. Identifying cost-effective methods of detecting and intervening before stress turns into severe problems is crucial. However, existing stress detection methods typically rely on psychological scales or devices, which can be complex and expensive. Therefore, we propose a BERT-fused model for rapidly and automatically detecting postgraduate students’ psychological stress via social media. First, we construct an improved BERT-LDA feature extraction algorithm to extract group stress features from large-scale and complex social media data. Then, we integrate the BiLSTM-CRF named entity recognition model to construct a multi-dimensional psychological stress profile and analyze the fine-grained feature representation under the fusion of multi-dimensional features. Experimental results demonstrate that the proposed model outperforms traditional models such as BiLSTM, achieving an accuracy of 92.55%, a recall of 93.47%, and an F1-score of 92.18%, with F1-scores exceeding 89% for all three types of entities. This research provides both theoretical and practical foundations for universities or institutions to conduct fine-grained perception and intervention for postgraduate students’ psychological stress.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312264 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12264&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312264

DOI: 10.1371/journal.pone.0312264

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-06
Handle: RePEc:plo:pone00:0312264