EconPapers    
Economics at your fingertips  
 

Distributed Denial of Services (DDoS) attack detection in SDN using Optimizer-equipped CNN-MLP

Sajid Mehmood, Rashid Amin, Jamal Mustafa, Mudassar Hussain, Faisal S Alsubaei and Muhammad D Zakaria

PLOS ONE, 2025, vol. 20, issue 1, 1-29

Abstract: Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features. Denial-of-service (DoS) attacks continuously impact users and Internet service providers (ISPs). Because of its centralized design, distributed denial of service (DDoS) attacks on SDN are frequent and may have a widespread effect on the network, particularly at the control layer. We propose to implement both MLP (Multilayer Perceptron) and CNN (Convolutional Neural Networks) based on conventional methods to detect the Denial of Services (DDoS) attack. These models have got a complex optimizer installed on them to decrease the false positive or DDoS case detection efficiency. We use the SHAP feature selection technique to improve the detection procedure. By assisting in the identification of which features are most essential to spot the incidents, the approach aids in the process of enhancing precision and flammability. Fine-tuning the hyperparameters with the help of Bayesian optimization to obtain the best model performance is another important thing that we do in our model. Two datasets, InSDN and CICDDoS-2019, are utilized to assess the effectiveness of the proposed method, 99.95% for the true positive (TP) of the CICDDoS-2019 dataset and 99.98% for the InSDN dataset, the results show that the model is highly accurate.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312425 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12425&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312425

DOI: 10.1371/journal.pone.0312425

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0312425