EconPapers    
Economics at your fingertips  
 

Prediction method of sugarcane important phenotype data based on multi-model and multi-task

Jihong Sun, Chen Sun, Zhaowen Li, Ye Qian and Tong Li

PLOS ONE, 2024, vol. 19, issue 12, 1-25

Abstract: The efficacy of generalized sugarcane yield prediction models holds significant implications for global food security. Given that machine learning algorithms often surpass the precision of remote sensing technology, further exploration of machine learning algorithms in the development of sugarcane yield prediction models is imperative. In this study, we employed six key phenotypic traits of sugarcane, specifically plant height, stem diameter, third-node length (internode length), leaf length, leaf width, and field brix, along with eight machine learning methods: logistic regression, linear regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Backpropagation Neural Network (BPNN), Decision Tree, Random Forest, and the XGBoost algorithm. The aim was to establish an intelligent model ensemble for predicting two crucial phenotypic characteristics—stem diameter and plant height—that determine sugarcane yield, ultimately enhancing the overall yield.The experimental findings indicate that the XGBoost algorithm outperforms the other seven algorithms in predicting these significant phenotypic traits of sugarcane. Furthermore, an analysis of the sugarcane intelligent prediction model’s performance under a specialized data environment, incorporating self-prepared data, reveals that the XGBoost algorithm exhibits greater stability. Notably, the data pertaining to these crucial phenotypic traits have a profound impact on the efficacy of the intelligent models. The research demonstrates that a sugarcane yield prediction model ensemble, incorporating multiple intelligent algorithms, can accurately forecast stem diameter and plant height, thereby predicting sugarcane yield. Additionally, this approach, combined with the principles of sugarcane cross-breeding, provides a valuable reference for the artificial breeding of new sugarcane varieties that excel in stem diameter and plant height, bridging a research gap in indirect yield prediction through sugarcane phenotypic traits.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312444 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12444&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312444

DOI: 10.1371/journal.pone.0312444

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0312444