Automated mapping of land cover in Google Earth Engine platform using multispectral Sentinel-2 and MODIS image products
Xia Pan,
Zhenyi Wang,
Gary Feng,
Shan Wang and
Sathishkumar Samiappan
PLOS ONE, 2025, vol. 20, issue 4, 1-20
Abstract:
Land cover mapping often utilizes supervised classification, which can have issues with insufficient sample size and sample confusion, this study assessed the accuracy of a fast and reliable method for automatic labeling and collection of training samples. Based on the self-programming in Google Earth Engine (GEE) cloud-based platform, a large and reliable training dataset of multispectral Sentinel-2 image was extracted automatically across the study area from the existing MODIS land cover product. To enhance confidence in high-quality training class labels, homogeneous 20 m Sentinel-2 pixels within each 500 m MODIS pixel were selected and a minority of heterogeneous 20 m pixels were removed based on calculations of spectral centroid and Euclidean distance. Further, the quality control and spatial filter were applied for all land cover classes to generate a reliable and representative training dataset that was subsequently applied to train the Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Machine (SVM) classifiers. The results shows that the main land cover types in the study area as distinguished by three different classifiers were Evergreen Broadleaf Forests, Mixed Forests, Woody Savannas, and Croplands. In the training and validation samples, the numbers of correctly classified pixels under the CART without computationally intensive were more than those for the RF and SVM classifiers. Moreover, the user’s and producer’s accuracies, overall accuracy and kappa coefficient of the CART classifier were the best, indicating the CART classifier was more suitable to this automatic workflow for land cover mapping. The proposed method can automatically generate a large number of reliable and accurate training samples in a timely manner, which is promising for future land cover mapping in a large-scale region.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312585 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12585&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312585
DOI: 10.1371/journal.pone.0312585
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().