EconPapers    
Economics at your fingertips  
 

Machine learning estimates on the impacts of detection times on wildfire suppression costs

Michael Shucheng Huang and Bruno Wichmann

PLOS ONE, 2024, vol. 19, issue 11, 1-20

Abstract: As climate warming exacerbates wildfire risks, prompt wildfire detection is an essential step in designing an efficient suppression strategy, monitoring wildfire behavior and, when necessary, issuing evacuation orders. In this context, there is increasing demand for estimates of returns on wildfire investments and their potential for cost savings. Using fire-level data from Western Canada during 2015–2020, the paper associates variation in wildfire reporting delays with variation in suppression costs. We use machine learning and orthogonalization methods to isolate the impact of reporting delays from nonlinear impacts of the fire environment. We find that reporting delays account for only three percent of total suppression costs. Efforts to improve detection and reduce wildfire reporting delays by one hour lead to a modest 0.25% reduction in suppression costs. These results suggest that investments in detection systems that reduce wildfire reporting delays are not justified on suppression costs savings alone.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313200 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13200&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313200

DOI: 10.1371/journal.pone.0313200

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0313200