A numerical evaluation of real-time workloads for ramp controller through optimization of multi-type feature combinations derived from eye tracker, respiratory, and fatigue patterns
Quan Shao,
Kaiyue Jiang and
Ruoheng Li
PLOS ONE, 2024, vol. 19, issue 11, 1-30
Abstract:
Ramp controllers are required to manage their workloads effectively while handling complex operational tasks, a crucial part of improving aviation safety. The ability to detect their instantaneous workload is vital for ensuring operational effectiveness and preventing hazardous incidents. This paper introduces a novel methodology aimed at enhancing the evaluation of the ramp controller’s cumulative workload by incorporating and optimizing the feature combination from eye movement, respiratory, and fatigue characteristics. Specifically, a 90-minute simulated experiment related to ramp control tasks, using real data from Shanghai Hongqiao Airport, is conducted to collect multi-type data from 8 controllers. Following data construction and the extraction of multi-type, the workloads of all samples are categorized through unsupervised learning. Subsequently, supervised learning techniques are used to calculate feature weights and train classifiers after data alignment. The optimal feature combination is established by calculating feature weights, and the best classification accuracy is over 98%, achieved by the KNN classifier. Furthermore, numerical evaluation and threshold calculations for different workload levels are interpreted. It is promising to provide insights into future works towards human-centered data construction, processing, and interpretation to promote the progress of workload assessment within the aviation industry.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313565 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13565&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313565
DOI: 10.1371/journal.pone.0313565
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().