EconPapers    
Economics at your fingertips  
 

Predictive models for health-related quality of life built on two telemonitoring datasets

Matea Tashkovska, Stefan Krsteski, Emilija Kizhevska, Jakob Valič, Hristijan Gjoreski and Mitja Luštrek

PLOS ONE, 2024, vol. 19, issue 12, 1-20

Abstract: Congestive heart failure (CHF) is an incurable disease where a key objective of the treatment is to maintain the patient’s quality of life (QoL) as much as possible. A model that predicts health-related QoL (HRQoL) based on physiological and ambient parameters can be used to monitor these parameters for the patient’s benefit. Since it is difficult to predict how CHF progresses, in this study we tried to predict HRQoL for a particular patient as an individual, using two different datasets, collected while telemonitoring CHF patients. We used different types of imputation, classification models, number of classes and evaluation techniques for both datasets, but the main focus is on unifying the datasets, which allowed us to build cross-dataset models. The results showed that using general predictive models intended for previously unseen patients do not work well. Personalization significantly improves the prediction, both personalized models and personalized imputation, which is important due to many missing data in the datasets. However, this implies that applications using such predictive models would also need to collect some self-reported labels of HRQoL to be able to help patients effectively.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313815 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13815&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313815

DOI: 10.1371/journal.pone.0313815

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0313815