Energy consumption forecasting for oil and coal in China based on hybrid deep learning
Jiao He,
Yuhang Li,
Xiaochuan Xu and
Di Wu
PLOS ONE, 2025, vol. 20, issue 1, 1-21
Abstract:
The consumption forecasting of oil and coal can help governments optimize and adjust energy strategies to ensure energy security in China. However, such forecasting is extremely challenging because it is influenced by many complex and uncertain factors. To fill this gap, we propose a hybrid deep learning approach for consumption forecasting of oil and coal in China. It consists of three parts, i.e., feature engineering, model building, and model integration. First, feature engineering is to distinguish the different correlations between targeted indicators and various features. Second, model building is to build five typical deep learning models with different characteristics to forecast targeted indicators. Third, model integration is to ensemble the built five models with a tailored, self-adaptive weighting strategy. As such, our approach enjoys all the merits of the five deep learning models (they have different learning structures and temporal constraints to diversify them for ensembling), making it able to comprehensively capture all the characteristics of different indicators to achieve accurate forecasting. To evaluate the proposed approach, we collected the real 880 pieces of data with 39 factors regarding the energy consumption of China ranging from 1999 to 2021. By conducting extensive experiments on the collected datasets, we have identified the optimal features for four targeted indicators (i.e., import of oil, production of oil, import of coal, and production of coal), respectively. Besides, we have demonstrated that our approach is significantly more accurate than the state-of-the-art forecasting competitors.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313856 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13856&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313856
DOI: 10.1371/journal.pone.0313856
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().