EconPapers    
Economics at your fingertips  
 

Data-driven cultural background fusion for environmental art image classification: Technical support of the dual Kernel squeeze and excitation network

Chenchen Liu and Haoyue Guo

PLOS ONE, 2025, vol. 20, issue 3, 1-25

Abstract: This study aims to explore a data-driven cultural background fusion method to improve the accuracy of environmental art image classification. A novel Dual Kernel Squeeze and Excitation Network (DKSE-Net) model is proposed for the complex cultural background and diverse visual representation in environmental art images. This model combines the advantages of adaptive adjustment of receptive fields using the Selective Kernel Network (SKNet) and the characteristics of enhancing channel features using the Squeeze and Excitation Network (SENet). Constructing a DKSE module can comprehensively extract the global and local features of the image. The DKSE module adopts various techniques such as dilated convolution, L2 regularization, Dropout, etc. in the multi-layer convolution process. Firstly, dilated convolution is introduced into the initial layer of the model to enhance the original art image’s feature capture ability. Secondly, the pointwise convolution is constrained by L2 regularization, thus enhancing the accuracy and stability of the convolution. Finally, the Dropout technology randomly discards the feature maps before and after global average pooling to prevent overfitting and improve the model’s generalization ability. On this basis, the Rectified Linear Unit activation function and depthwise convolution are introduced after the second layer convolution, and batch normalization is performed to improve the efficiency and robustness of feature extraction. The experimental results indicate that the proposed DKSE-Net model significantly outperforms traditional Convolutional Neural Networks (CNNs) and other existing state-of-the-art models in the task of environmental art image classification. Specifically, the DKSE-Net model achieves a classification accuracy of 92.7%, 3.5 percentage points higher than the comparative models. Moreover, when processing images with complex cultural backgrounds, DKSE-Net can effectively integrate different cultural features, achieving a higher classification accuracy and stability. This enhancement in performance provides an important reference for image classification research based on the fusion of cultural backgrounds and demonstrates the broad potential of deep learning technology in the environmental art field.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313946 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13946&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313946

DOI: 10.1371/journal.pone.0313946

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0313946