Contact pressure explains half of the abdominal aortic aneurysms wall thickness inter-study variability
Jan Kracík,
Luboš Kubíček,
Robert Staffa and
Stanislav Polzer
PLOS ONE, 2024, vol. 19, issue 12, 1-18
Abstract:
The stochastic rupture risk assessment of an abdominal aortic aneurysm (AAA) critically depends on sufficient data set size that would allow for the proper distribution estimate. However, in most published cases, the data sets comprise no more than 100 samples, which is deemed insufficient to describe the tails of AAA wall thickness distribution correctly. In this study, we propose a stochastic Bayesian model to merge thickness data from various groups. The thickness data adapted from the literature were supplemented by additional data from 81 patients. The wall thickness was measured at two different contact pressures for 34 cases, which allowed us to estimate the radial stiffness. Herein, the proposed stochastic model is formulated to predict the undeformed wall thickness. Furthermore, the model is able to handle data published solely as summary statistics. After accounting for the different contact pressures, the differences in the medians reported by individual groups decreased by 45%. Combined data can be fitted with a lognormal distribution with parameters μ = 0.85 and σ = 0.32 which can be further used in stochastic analyses.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314368 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14368&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0314368
DOI: 10.1371/journal.pone.0314368
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().