EconPapers    
Economics at your fingertips  
 

Based on PCA and SSA-LightGBM oil-immersed transformer fault diagnosis method

Jizhong Wang, Jianfei Chi, Yeqiang Ding, Haiyan Yao and Qiang Guo

PLOS ONE, 2025, vol. 20, issue 2, 1-14

Abstract: A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a 17 dimensional fault feature matrix is constructed using the uncoded ratio method. The feature matrix is then standardized to obtain joint features. Secondly, principal component analysis is used for feature fusion to eliminate information redundancy between variables and construct fused features. Finally, a transformer diagnostic model based on SSA-LightGBM was constructed, and the ten fold cross validation method was used to verify the classification ability of the model. The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. At the same time, compared with the GA-LightGBM and GWO-LightGBM fault diagnosis models, SSA-LightGBM has improved the diagnostic accuracy by 8.1% and 5.7% respectively, verifying that this method can effectively improve the fault diagnosis performance of oil immersed transformers and is superior to other similar methods.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314481 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14481&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0314481

DOI: 10.1371/journal.pone.0314481

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0314481