Accreditation of new technologies for predicting intramuscular fat percentage: Combining Bayesian models and industry rules for transparent decisions
Graham E Gardner and
Clair L Alston-Knox
PLOS ONE, 2025, vol. 20, issue 3, 1-22
Abstract:
The experiment evaluated a method for statistically assessing the accuracy of technologies that measure intramuscular fat percentage (IMF%), enabling referencing against accreditation accuracy thresholds. To compare this method to the existing rules-based industry standard we simulated data for 4 separate devices that predicted IMF% across a range between 0.5–9.5% for sheep meat. These devices were simulated to reflect increasingly inaccurate predictions, and the two methods for statistically assessing accuracy were then applied. We found that for the technology which only just meets the accreditation accuracy standards, as few as 25 samples were required within each quarter of the IMF% range to achieve 80% likelihood of passing accreditation. In contrast, using the rules based approach at least 200 samples were required within each quarter of the IMF% range, and this increased the likelihood of passing to only 50%. This method has been developed into an on-line analysis App, which commercial users can freely access to test the accuracy of their technologies.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314714 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14714&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0314714
DOI: 10.1371/journal.pone.0314714
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().