EconPapers    
Economics at your fingertips  
 

Cost-sensitive multi-kernel ELM based on reduced expectation kernel auto-encoder

Liang Yixuan

PLOS ONE, 2025, vol. 20, issue 2, 1-20

Abstract: ELM (Extreme learning machine) has drawn great attention due its high training speed and outstanding generalization performance. To solve the problem that the long training time of kernel ELM auto-encoder and the difficult setting of the weight of kernel function in the existing multi-kernel models, a multi-kernel cost-sensitive ELM method based on expectation kernel auto-encoder is proposed. Firstly, from the view of similarity, the reduced kernel auto-encoder is defined by randomly selecting the reference points from the input data; then, the reduced expectation kernel auto-encoder is designed according to the expectation kernel ELM, and the combination of random mapping and similarity mapping is realized. On this basis, two multi-kernel ELM models are designed, and the output of the classifier is converted into posterior probability. Finally, the cost-sensitive decision is realized based on the minimum risk criterion. The experimental results on the public and realistic datasets verify the effectiveness of the method.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314851 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14851&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0314851

DOI: 10.1371/journal.pone.0314851

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0314851