Automated gait event detection for exoskeleton-assisted walking using a long short-term memory model with ground reaction force and heel marker data
Xiaowen Chen and
Anne E Martin
PLOS ONE, 2025, vol. 20, issue 2, 1-15
Abstract:
Traditional gait event detection methods for heel strike and toe-off utilize thresholding with ground reaction force (GRF) or kinematic data, while recent methods tend to use neural networks. However, when subjects’ walking behaviors are significantly altered by an assistive walking device, these detection methods tend to fail. Therefore, this paper introduces a new long short-term memory (LSTM)-based model for detecting gait events in subjects walking with a pair of custom ankle exoskeletons. This new model was developed by multiplying the weighted output of two LSTM models, one with GRF data as the input and one with heel marker height as input. The gait events were found using peak detection on the final model output. Compared to other machine learning algorithms, which use roughly 8:1 training-to-testing data ratio, this new model required only a 1:79 training-to-testing data ratio. The algorithm successfully detected over 98% of events within 16ms of manually identified events, which is greater than the 65% to 98% detection rate of previous LSTM algorithms. The high robustness and low training requirements of the model makes it an excellent tool for automated gait event detection for both exoskeleton-assisted and unassisted walking of healthy human subjects.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315186 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15186&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0315186
DOI: 10.1371/journal.pone.0315186
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().