EconPapers    
Economics at your fingertips  
 

Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation

Iran Sarafraz, Hamed Agahi and Azar Mahmoodzadeh

PLOS ONE, 2025, vol. 20, issue 1, 1-16

Abstract: CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results. In this article, an adaptive method for CNN automatic configuration for neonatal brain image segmentation is presented based on the encoder-decoder structure, in which the hyperparameters of this network, i.e., size, length, and width of the filter in each layer along with the type of pooling functions with a reinforcement learning approach and an LA model are determined. These LA models determine the optimal configuration for the CNN model by using DICE and ASD segmentation quality evaluation criteria, so that the segmentation quality can be maximized based on the goal criteria. The effectiveness of the proposed method has been evaluated using a database of infant MRI images and the results have been compared with previous methods. The results show that by using the proposed method, it is possible to segment NBI with higher quality and accuracy.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315538 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15538&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0315538

DOI: 10.1371/journal.pone.0315538

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-30
Handle: RePEc:plo:pone00:0315538