qlifetable: An R package for constructing quarterly life tables
Jose M Pavía and
Josep Lledó
PLOS ONE, 2025, vol. 20, issue 2, 1-20
Abstract:
The big data revolution has greatly expanded the availability of microdata on vital statistics, providing researchers with unprecedented access to large and complex datasets on birth, death, migration, and population, sometimes even including exact dates of demographic events. This has led to the development of a novel methodology for estimating sub-annual life tables that offers new opportunities for the insurance industry, also potentially impacting on the management of pension funds and social security systems. This paper introduces the qlifetable package, an R implementation of this methodology. It begins by detailing how basic summary statistics are computed by the package from detailed individual records, including the length of age years, which should be observed as relative (subjective) to ensure congruency between age and calendar time when measuring exposure times and exact ages of individuals at events. This is a new result that compels the observation of time as relative in the disciplines of actuarial science, risk management and demography. Afterwards, the paper demonstrates the use of the package, which integrates a set of functions for estimating crude quarterly (and annual) death rates, calculating seasonal-ageing indexes (SAIs) and building quarterly life tables for a (general or insured) population by exploiting either microdata of dates of births and events or summary statistics.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315937 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15937&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0315937
DOI: 10.1371/journal.pone.0315937
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().