Area under the ROC Curve has the most consistent evaluation for binary classification
Jing Li
PLOS ONE, 2024, vol. 19, issue 12, 1-28
Abstract:
The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence while the relationships between different variables and the sample size are kept constant. Analyzing 156 data scenarios, 18 model evaluation metrics and five commonly used machine learning models as well as a naive random guess model, I find that evaluation metrics that are less influenced by prevalence offer more consistent evaluation of individual models and more consistent ranking of a set of models. In particular, Area Under the ROC Curve (AUC) which takes all decision thresholds into account when evaluating models has the smallest variance in evaluating individual models and smallest variance in ranking of a set of models. A close threshold analysis using all possible thresholds for all metrics further supports the hypothesis that considering all decision thresholds helps reduce the variance in model evaluation with respect to prevalence change in data. The results have significant implications for model evaluation and model selection in binary classification tasks.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316019 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16019&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316019
DOI: 10.1371/journal.pone.0316019
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().