EconPapers    
Economics at your fingertips  
 

Development of a diagnostic multivariable prediction model of a positive SARS-CoV-2 RT-PCR result in healthcare workers with suspected SARS-CoV-2 infection in hospital settings

Sandra Liliana Valderrama-Beltrán, Juliana Cuervo-Rojas, Martín Rondón, Juan Sebastián Montealegre-Diaz, Juan David Vera, Samuel Martinez-Vernaza, Alejandra Bonilla, Camilo Molineros, Viviana Fierro, Atilio Moreno, Leidy Villalobos, Beatriz Ariza and Carlos Álvarez-Moreno

PLOS ONE, 2024, vol. 19, issue 12, 1-17

Abstract: Background: Despite declining COVID-19 incidence, healthcare workers (HCWs) still face an elevated risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We developed a diagnostic multivariate model to predict positive reverse transcription polymerase chain reaction (RT-PCR) results in HCWs with suspected SARS-CoV-2 infection. Methods: We conducted a cross-sectional study on episodes involving suspected SARS-CoV-2 symptoms or close contact among HCWs in Bogotá, Colombia. Potential predictors were chosen based on clinical relevance, expert knowledge, and literature review. Logistic regression was used, and the best model was selected by evaluating model fit with Akaike Information Criterion (AIC), deviance, and maximum likelihood. Results: The study included 2498 episodes occurring between March 6, 2020, to February 2, 2022. The selected variables were age, socioeconomic status, occupation, service, symptoms (fever, cough, fatigue/weakness, diarrhea, anosmia or dysgeusia), asthma, history of SARS-CoV-2, vaccination status, and population-level RT-PCR positivity. The model achieved an AUC of 0.79 (95% CI 0.77–0.81), with 93% specificity, 36% sensitivity, and satisfactory calibration. Conclusions: We present an innovative diagnostic prediction model that as a special feature includes a variable that represents SARS-CoV-2 epidemiological situation. Given its performance, we suggest using the model differently based on the level of viral circulation in the population. In low SARS-CoV-2 circulation periods, the model could serve as a replacement diagnostic test to classify HCWs as infected or not, potentially reducing the need for RT-PCR. Conversely, in high viral circulation periods, the model could be used as a triage test due to its high specificity. If the model predicts a high probability of a positive RT-PCR result, the HCW may be considered infected, and no further testing is performed. If the model indicates a low probability, the HCW should undergo a COVID-19 test. In resource-limited settings, this model can help prioritize testing and reduce expenses.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316207 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16207&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316207

DOI: 10.1371/journal.pone.0316207

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-01
Handle: RePEc:plo:pone00:0316207