A parametric bootstrap control chart for Lindley Geometric percentiles
Muthanna Ali Hussein Al-Lami,
Hossein Jabbari Khamnei and
Ali Akbar Heydari
PLOS ONE, 2025, vol. 20, issue 2, 1-29
Abstract:
Control charts are vital for quality control and process monitoring, helping businesses identify variations in production. Traditional control charts, like Shewhart charts, may not work well for skewed distributions, such as the Lindley geometric distribution (LG). This study introduces a new control chart that uses parametric bootstrap techniques to monitor percentiles of the LG distribution, providing a more effective quality control method. The LG distribution is useful for modeling material strength and failures, especially in structural design, where lower percentiles indicate reduced tensile strength. We conducted extensive simulations to assess the proposed control chart’s effectiveness, considering various distribution parameters, percentile values, Type I error rates, and sample sizes. Our findings highlight how subgroup size, percentiles, and significance levels affect control limits, stressing the need for careful parameter selection in monitoring processes. The results show that the new control chart is highly sensitive to changes in LG distribution parameters and performs consistently across different percentiles. This suggests its practical relevance and robustness for industrial applications in quality control. Future research should explore its performance in real-world production settings to confirm its efficiency and reliability.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316449 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16449&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316449
DOI: 10.1371/journal.pone.0316449
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().