EconPapers    
Economics at your fingertips  
 

A networked station system for high-resolution wind nowcasting in air traffic operations: A data-augmented deep learning approach

Décio Alves, Fábio Mendonça, Sheikh Shanawaz Mostafa, Diogo Freitas, João Pestana, Dinarte Vieira, Marko Radeta and Fernando Morgado-Dias

PLOS ONE, 2025, vol. 20, issue 1, 1-20

Abstract: This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons. For the most challenging task, the 30-minute ahead forecasts, the model achieved a wind speed Mean Absolute Error (MAE) of 0.78 m/s and a wind direction MAE of 33.06°. Furthermore, the use of Gaussian noise concatenation to both input and label training data yielded the most consistent results. A case study further validated the model’s efficacy, with MAE values below 0.43 m/s for wind speed and between 33.93° and 35.03° for wind direction across different forecast horizons. This approach shows that combining strategically deployed sensor networks with machine learning techniques offers improvements in wind nowcasting for airports in complex environments, possibly enhancing operational efficiency and safety.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316548 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16548&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316548

DOI: 10.1371/journal.pone.0316548

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0316548