Land cover classification of high-resolution remote sensing images based on improved spectral clustering
Song Wu,
Jian-Min Cao and
Xin-Yu Zhao
PLOS ONE, 2025, vol. 20, issue 2, 1-18
Abstract:
Applying unsupervised classification techniques on remote sensing images enables rapid land cover classification. Using remote sensing imagery from the ZY1-02D satellite’s VNIC and AHSI cameras as the basis, multi-source feature information encompassing spectral, edge shape, and texture features was extracted as the data source. The Lanczos algorithm, which determines the largest eigenpairs of a high-order matrix, was integrated with the spectral clustering algorithm to solve for eigenvalues and eigenvectors. The results indicate that this method can quickly and effectively classify land cover. The classification accuracy was significantly improved by incorporating multi-source feature information, with a kappa coefficient reaching 0.846. Compared to traditional classification methods, the improved spectral clustering algorithm demonstrated better adaptability to data distribution and superior clustering performance. This suggests that the method has strong recognition capabilities for pixels with complex spatial shapes, making it a high-performance, unsupervised classification approach.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316830 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16830&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316830
DOI: 10.1371/journal.pone.0316830
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().