EconPapers    
Economics at your fingertips  
 

A spatial interpolation method based on 3D-CNN for soil petroleum hydrocarbon pollution

Sheng Miao, Guoqing Ni, Guangze Kong, Xiuhe Yuan, Chao Liu, Xiang Shen and Weijun Gao

PLOS ONE, 2025, vol. 20, issue 1, 1-20

Abstract: Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data. This study explores the application of Three-Dimensional Convolutional Neural Networks (3DCNN) in spatial interpolation to evaluate soil pollution. By introducing Channel Attention Mechanism (CAM), the model assigns different weights to auxiliary variables, improving the prediction accuracy of soil hydrocarbon content. We collected soil pollution data and validated the spatial distribution map generated using this method based on the drilling dataset. The results indicate that compared with traditional Kriging3D methods (R2 = 0.318) and other machine learning methods such as support vector regression (R2 = 0.582), the proposed 3DCNN based method can achieve better accuracy (R2 = 0.954). This approach provides a sustainable tool for soil pollution management, supports decision-makers in developing effective remediation strategies, and promotes the sustainable development of spatial interpolation techniques in environmental science.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316940 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 16940&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0316940

DOI: 10.1371/journal.pone.0316940

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0316940