EconPapers    
Economics at your fingertips  
 

Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study

Xueliang Guo and Lin Sun

PLOS ONE, 2025, vol. 20, issue 2, 1-35

Abstract: This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer’s local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model’s sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models’s capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317193 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17193&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0317193

DOI: 10.1371/journal.pone.0317193

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0317193