Classification of CT scan and X-ray dataset based on deep learning and particle swarm optimization
Honghua Liu,
Mingwei Zhao,
Chang She,
Han Peng,
Mailan Liu and
Bo Li
PLOS ONE, 2025, vol. 20, issue 1, 1-18
Abstract:
In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning. This paper proposes a low false positive rate disease detection method based on COVID-19 lung images and establishes a two-stage optimization model. In the first stage, the model is trained using classical gradient descent, and relevant features are extracted; in the second stage, an objective function that minimizes the false positive rate is constructed to obtain a network model with high accuracy and low false positive rate. Therefore, the proposed method has the potential to effectively classify medical images. The proposed model was verified using a public COVID-19 radiology dataset and a public COVID-19 lung CT scan dataset. The results show that the model has made significant progress, with the false positive rate reduced to 11.3% and 7.5%, and the area under the ROC curve increased to 92.8% and 97.01%.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317450 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17450&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0317450
DOI: 10.1371/journal.pone.0317450
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().