EconPapers    
Economics at your fingertips  
 

Elevated few-shot network intrusion detection via self-attention mechanisms and iterative refinement

Congyuan Xu, Yong Zhan, Guanghui Chen, Zhiqiang Wang, Siqing Liu and Weichen Hu

PLOS ONE, 2025, vol. 20, issue 1, 1-22

Abstract: The network intrusion detection system (NIDS) plays a critical role in maintaining network security. However, traditional NIDS relies on a large volume of samples for training, which exhibits insufficient adaptability in rapidly changing network environments and complex attack methods, especially when facing novel and rare attacks. As attack strategies evolve, there is often a lack of sufficient samples to train models, making it difficult for traditional methods to respond quickly and effectively to new threats. Although existing few-shot network intrusion detection systems have begun to address sample scarcity, these systems often fail to effectively capture long-range dependencies within the network environment due to limited observational scope. To overcome these challenges, this paper proposes a novel elevated few-shot network intrusion detection method based on self-attention mechanisms and iterative refinement. This approach leverages the advantages of self-attention to effectively extract key features from network traffic and capture long-range dependencies. Additionally, the introduction of positional encoding ensures the temporal sequence of traffic is preserved during processing, enhancing the model’s ability to capture temporal dynamics. By combining multiple update strategies in meta-learning, the model is initially trained on a general foundation during the training phase, followed by fine-tuning with few-shot data during the testing phase, significantly reducing sample dependency while improving the model’s adaptability and prediction accuracy. Experimental results indicate that this method achieved detection rates of 99.90% and 98.23% on the CICIDS2017 and CICIDS2018 datasets, respectively, using only 10 samples.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317713 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17713&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0317713

DOI: 10.1371/journal.pone.0317713

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0317713