A feature-based approach for atlas selection in automatic pelvic segmentation
Guoping Shan,
Xue Bai,
Yun Ge and
Binbing Wang
PLOS ONE, 2025, vol. 20, issue 1, 1-12
Abstract:
Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation. A dataset of anonymized female pelvic Computed Tomography (CT) images demonstrated that MAS-SAGA significantly outperforms conventional multi-atlas-based segmentation (cMAS) in terms of Dice Similarity Coefficient (DSC) and 95th Percentile Hausdorff Distance (95HD) for bladder and rectum segmentation using a three-fold cross-validation strategy. The proposed procedure also reduced computation time compared to cMAS, making it a promising tool for medical image analysis applications. In addition, we have evaluated two distinct atlas selection methods: the Feature-based Atlas Selection Approach (MAS-FASA) and the Similarity-based Atlas Selection Approach (MAS-SIM). We investigate the differences between these two methods in terms of their ability to select the best fitting atlases. The findings demonstrated that MAS-FASA selected different atlases than MAS-SIM, resulting in improved segmentation performance overall. It highlighted the potential of feature-based subgrouping techniques in enhancing the efficacy of MAS algorithms in the field of medical image segmentation.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317801 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17801&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0317801
DOI: 10.1371/journal.pone.0317801
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().