Adaptive wavelet base selection for deep learning-based ECG diagnosis: A reinforcement learning approach
Qiao Xiao and
Chaofeng Wang
PLOS ONE, 2025, vol. 20, issue 2, 1-21
Abstract:
Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases (CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a significant challenge, as it directly influences feature quality and diagnostic accuracy. Traditional methods typically rely on fixed wavelet bases chosen heuristically or through trial-and-error, which can fail to cover the distinct characteristics of individual ECG signals, leading to suboptimal performance. To address this limitation, we propose a reinforcement learning-based wavelet base selection (RLWBS) framework that dynamically customizes the wavelet base for each ECG signal. In this framework, a reinforcement learning (RL) agent iteratively optimizes its wavelet base selection (WBS) strategy based on successive feedback of classification performance, aiming to achieve progressively optimized feature extraction. Experiments conducted on the clinically collected PTB-XL dataset for ECG abnormality classification show that the proposed RLWBS framework could obtain more detailed time-frequency representation of ECG signals, yielding enhanced diagnostic performance compared to traditional WBS approaches.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318070 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18070&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0318070
DOI: 10.1371/journal.pone.0318070
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().