EconPapers    
Economics at your fingertips  
 

HPRNA: Predicting synergistic drug combinations for angina pectoris based on human pathway relationship network algorithm

Mengyao Zhou, Mengfan Xu, Xiangling Zhang, Xiaochun Xing, Yang Li, Guanghui Wang and Guiying Yan

PLOS ONE, 2025, vol. 20, issue 2, 1-15

Abstract: Over the years, synergistic drug combinations therapies have attracted widespread attention due to its advantages of overcoming drug resistance, increasing treatment efficacy and decreasing toxicity. Compared to lengthy medical drugs experimental screening, mathematical models and algorithms show great potential in synergistic drug combinations prediction. In this paper, we introduce a novel mathematical algorithm, the Human Pathway Relationship Network Algorithm (HPRNA), which is designed to predict synergistic drug combinations for angina pectoris. We first reconstruct a novel angina pectoris drug dataset, which include drug name, drug metabolism, chemical formula, targets and pathways, then construct a comprehensive human pathway network based on the genetic similarity of the pathways which contain information about the targets. Finally, we introduce a novel indicator to calculate drug pair scores which measure the likelihood of forming synergistic drug combination. Experimental results on angina pectoris drug datasets convincingly demonstrate that the HPRNA makes efficient use of target and pathway information and is superior to previous algorithms.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318368 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18368&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0318368

DOI: 10.1371/journal.pone.0318368

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0318368