EconPapers    
Economics at your fingertips  
 

Unsupervised feature selection algorithm based on L 2,p -norm feature reconstruction

Wei Liu, Qian Ning, Guangwei Liu, Haonan Wang, Yixin Zhu and Miao Zhong

PLOS ONE, 2025, vol. 20, issue 3, 1-25

Abstract: Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l2,p-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318431 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18431&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0318431

DOI: 10.1371/journal.pone.0318431

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0318431