An integrated approach for advanced vehicle classification
Rui Liu,
Shiyuan Wen and
Yufei Xing
PLOS ONE, 2025, vol. 20, issue 2, 1-40
Abstract:
This study is dedicated to addressing the trade-off between receptive field size and computational efficiency in low-level vision. Conventional neural networks (CNNs) usually expand the receptive field by adding layers or inflation filtering, which often leads to high computational costs. Although expansion filtering was introduced to reduce the computational burden, the resulting receptive field is only a sparse sampling of the tessellated pattern in the input image due to the grid effect. To better trade-off between the size of the receptive field and the computational efficiency, a new multilevel discrete wavelet CNN model (DWAN) is proposed in this paper. The DWAN introduces a four-level discrete wavelet transform in the convolutional neural network architecture and combines it with Convolutional Block Attention Module (CBAM) to efficiently capture multiscale feature information. By reducing the size of the feature maps in the shrinkage subnetwork, DWAN achieves a wider sensory field coverage while maintaining a smaller computational cost, thus improving the performance and efficiency of visual tasks. In addition, this paper validates the DWAN model in an image classification task targeting fine categories of automobiles. Significant performance gains are observed by training and testing the DWAN architecture that includes CBAM. The DWAN model can identify and accurately classify subtle features and differences in automotive images, resulting in better classification results for the automotive fine-grained category. This validation result further demonstrates the effectiveness and robustness of the DWAN model in vision tasks and lays a solid foundation for its generalization to practical applications.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318530 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18530&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0318530
DOI: 10.1371/journal.pone.0318530
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().