Investigating statistical power of differential abundance studies
Michael Agronah and
Benjamin Bolker
PLOS ONE, 2025, vol. 20, issue 4, 1-14
Abstract:
Identifying microbial taxa that differ in abundance between groups (control/treatment, healthy/diseased, etc.) is important for both basic and applied science. As in all scientific research, microbiome studies must have good statistical power to detect taxa with substantially different abundance between treatments; low power leads to poor precision and biased effect size estimates. Several studies have raised concerns about low power in microbiome studies. In this study, we investigate statistical power in differential abundance analysis. In particular, we present a novel approach for estimating the statistical power to detect effects at the level of individual taxa as a function of effect size (fold change) and mean abundance. We analyzed seven real case-control microbiome datasets and developed a novel method for simulating microbiome data. We illustrate how power varies with effect size and mean abundance; our results suggest that typical differential abundance studies are underpowered for detecting changes in individual taxon.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318820 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 18820&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0318820
DOI: 10.1371/journal.pone.0318820
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().