Various optimization algorithms for efficient placement and sizing of photovoltaic distributed generations in different networks
Ahmed A Zaki Diab,
Fayza S Mahmoud,
Hamdy M Sultan,
Abou-Hashema M El-Sayed,
Mohamed A Ismeil and
Omar Makram Kamel
PLOS ONE, 2025, vol. 20, issue 4, 1-48
Abstract:
Recent research has concentrated on emphasizing the significance of incorporating renewable distributed generations (RDGs), like photovoltaic (PV) and wind turbines (WTs), into the distribution system to address issues related to distributed generation (DG) allocation. The key implications of integrating RDGs include the improvement of voltage profiles and the minimization of power losses. Various optimization techniques, namely Salp Swarm Algorithm (SSA), Marine Predictor Algorithm (MPA), Grey Wolf Optimizer (GWO), Improved Grey Wolf Optimizer (IGWO), and Seagull Optimization Algorithm (SOA), have been applied to achieve optimal allocation and sizing of RDGs in radial distributed systems (RDS). The present paper is structured in two phases. In the initial phase, the Loss Sensitivity Factor (LSF) is employed to identify the most suitable nodes for integrating RDGs. In the second phase, within the selected candidate nodes from the first phase, the optimal location and capacity of RDGs are determined. Additionally, a comprehensive comparison of the proposed optimization methods is conducted to select the most effective solutions for the allocation of units of RDGs. The efficacy of the utilized techniques is validated through testing on two distinct networks, namely the IEEE 33 and 69 buses RDS in MATLAB, with attainments compared against other techniques. Moreover, a larger RDS system of 118- bus IEEE system has been considered in order to enhance its power quality indices. Moreover, a real case of study from Egypt of 15 bus has been considered and evaluated with considering the applied techniques. The results show the enhancement of the voltage profile and decreasing the power losses of the tested system with the DG systems with the superiority of the MPA and SSA algorithms.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319422 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 19422&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0319422
DOI: 10.1371/journal.pone.0319422
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().