The reliability of cold region tunnels considering deterioration of the insulation layer
Jianqing Jia,
Shaohua An and
Victor O Tenorio
PLOS ONE, 2025, vol. 20, issue 4, 1-17
Abstract:
Frost heave is a most common form of tunnel defect in cold regions. Installing an insulation layer is a key solution. However, the insulation layer deteriorates with freeze-thaw cycles and temperature changes. These significantly impact tunnel reliability in these areas. To determine the influence of insulation layer deterioration and temperature change to reliability of cold region tunnel, this paper examines a tunnel in the Qinghai-Tibet Plateau. It uses projected temperature increases of 2.6 °C and 4 °C over the next 50 years as boundary conditions. The study analyzes the evolution of freeze-thaw thickness, temperature fields, and stress fields in the surrounding rock. It considers both scenarios: with and without insulation layer deterioration. Using the Monte-Carlo method, the study investigates the variation in tunnel reliability. The results indicate that, with insulation layer deterioration, freeze-thaw thickness, temperature fields, and stress fields in the surrounding rock increase under both temperature scenarios. Consequently, tunnel reliability decreases. Specifically, with temperature increases of 2.6 °C and 4 °C, tunnel reliability decreases by approximately 4.5% and 6.3%, respectively, when considering insulation layer deterioration.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320201 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20201&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0320201
DOI: 10.1371/journal.pone.0320201
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().