EconPapers    
Economics at your fingertips  
 

A lightweight detection algorithm of PCB surface defects based on YOLO

Shiwei Yu, Feng Pan, Xiaoqiang Zhang, Linhua Zhou, Liang Zhang and Jikui Wang

PLOS ONE, 2025, vol. 20, issue 4, 1-15

Abstract: Aiming at the problems of low accuracy and large computation in the task of PCB defect detection. This paper proposes a lightweight PCB defect detection algorithm based on YOLO. To address the problem of large numbers of parameters and calculations, GhostNet are used in Backbone to keep the model lightweight. Second, the ordinary convolution of the neck network is improved by depthwise separable convolution, resulting in a reduction of redundant parameters within the neck network. Afterwards, the Swin-Transformer is integrated with the C3 module in the Neck to build the C3STR module, which aims to address the issue of cluttered background in defective images and the confusion caused by simple defect types. Finally, the PANet network structure is replaced with the bidirectional feature pyramid network (BIFPN) structure to enhance the fusion of multi-scale features in the network. The results indicated that when comparing our model with the original model, there was a 47.2% reduction in the model’s parameter count, a 48.5% reduction in GFLOPs, a 42.4% reduction in Weight, a 2.0% reduction in FPS, and a 2.4% rise in mAP. The model is better suited for use on low-arithmetic platforms as a result.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320344 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20344&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0320344

DOI: 10.1371/journal.pone.0320344

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0320344