Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics
Ting Wang,
Boyang Zang,
Chui Kong,
Yigang Li,
Xiaomin Yang and
Yi Yu
PLOS ONE, 2025, vol. 20, issue 6, 1-11
Abstract:
Background: Breast cancer is the most common malignant tumor among women worldwide, and early diagnosis is crucial for reducing mortality rates. Traditional diagnostic methods have significant limitations in terms of accuracy and consistency. Imaging is a common technique for diagnosing and predicting breast cancer, but human error remains a concern. Increasingly, artificial intelligence (AI) is being employed to assist physicians in reducing diagnostic errors. Methods: We developed an intelligent diagnostic model combining deep learning and radiomics to enhance breast tumor diagnosis. The model integrates MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, improving feature processing and efficiency while reducing parameters. Using AI-Dhabyani and TCIA breast ultrasound datasets, we validated the model internally and externally, comparing it to VGG16, ResNet, AlexNet, and MobileNet. Results: The internal validation set achieved an accuracy of 83.84% with an AUC of 0.92, outperforming other models. The external validation set showed an accuracy of 69.44% with an AUC of 0.75, demonstrating high robustness and generalizability. Conclusions: We developed an intelligent diagnostic model using deep learning and radiomics to improve breast tumor diagnosis. The model combines MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, enhancing feature processing and efficiency while reducing parameters. It was validated internally and externally using the AI-Dhabyani and TCIA breast ultrasound datasets and compared with VGG16, ResNet, AlexNet, and MobileNet.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320732 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20732&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0320732
DOI: 10.1371/journal.pone.0320732
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().