RWOA: A novel enhanced whale optimization algorithm with multi-strategy for numerical optimization and engineering design problems
Junhao Wei,
Yanzhao Gu,
Baili Lu and
Ngai Cheong
PLOS ONE, 2025, vol. 20, issue 4, 1-51
Abstract:
Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. However, WOA suffers from issues such as slow convergence speed, low convergence accuracy, reduced population diversity in the later stages of iteration, and an imbalance between exploration and exploitation. To address these drawbacks, this paper proposed an enhanced Whale Optimization Algorithm (RWOA). RWOA utilized Good Nodes Set method to generate evenly distributed whale individuals and incorporated Hybrid Collaborative Exploration strategy, Spiral Encircling Prey strategy, and an Enhanced Spiral Updating strategy integrated with Levy flight. Additionally, an Enhanced Cauchy Mutation based on Differential Evolution was employed. Furthermore, we redesigned the update method for parameter a to better balance exploration and exploitation. The proposed RWOA was evaluated using 23 classical benchmark functions and the impact of six improvement strategies was analyzed. We also conducted a quantitative analysis of RWOA and compared its performance with other state-of-the-art (SOTA) metaheuristic algorithms. Finally, RWOA was applied to nine engineering design optimization problems to validate its ability to solve real-world optimization challenges. The experimental results demonstrated that RWOA outperformed other algorithms and effectively addressed the shortcomings of the canonical WOA.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320913 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 20913&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0320913
DOI: 10.1371/journal.pone.0320913
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().