Empowering entity synonym set generation using flexible perceptual field and multi-layer contextual information
Subin Huang,
Daoyu Li,
Chengzhen Yu,
Junjie Chen,
Qing Zhou and
Sanmin Liu
PLOS ONE, 2025, vol. 20, issue 4, 1-24
Abstract:
Automatic generation of entity synonyms plays a pivotal role in various natural language processing applications, such as search engines, question-answering systems, and taxonomy construction. Previous research on generating entity synonym sets has typically relied on approaches that involve sorting and pruning candidate entities or solving the problem in a two-stage manner (i.e., initially identifying pairs of synonyms and subsequently aggregating them into sets). Nevertheless, these approaches tend to disregard global entity information and are susceptible to error propagation issues. This paper introduces an innovative approach to generating entity synonym sets that leverages a flexible perception mechanism and multi-layer contextual information. Firstly, to determine whether to incorporate new candidate entities into synonym sets, the approach integrates a neural network classifier with a flexible perceptual field. Within the classifier, the approach builds a three-layer interactive network, and connects the entity layer, set layer, and sentence layer to the same embedding space to extract synonym features. Secondly, we introduce a dynamic-weight-based algorithm for synthesizing entity synonym sets, leveraging a neural network classifier trained to generate entity synonym sets from the candidate entity vocabulary. Finally, extensive experimental results on three public datasets demonstrate that our approach outperforms other comparable approaches in generating entity synonym sets.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321381 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21381&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321381
DOI: 10.1371/journal.pone.0321381
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().