EconPapers    
Economics at your fingertips  
 

Semisupervised adaptive learning models for IDH1 mutation status prediction

Fengning Liang, Yaru Cao, Teng Zhao, Qian Xu and Hong Zhu

PLOS ONE, 2025, vol. 20, issue 5, 1-16

Abstract: The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suffer from various limitations, such as the data waste and instability issues. To address such issues, we present a semisupervised adaptive deep learning model based on radiomics and rough sets for predicting the mutation status of IDH1 from MRI data. Firstly, our model uses a rough set algorithm to remove the redundant medical image features extracted by radiomics, while adding pseudo-labels for non-labeled data via statistical. T-tests to mitigate the common issue of insufficient datasets in medical imaging analysis. Then, it applies a Sand Cat Swarm Optimization (SCSO) algorithm to optimize the weight of pseudo-label data. Finally, our model adopts U-Net and CRNN to construct UCNet, a semisupervised classification model for classifying IDH1 mutation status. To validate our models, we use a preoperative MRI dataset with 316 glioma patients to evaluate the performance. Our study suggests that the prediction accuracy of glioma IDH1 mutation status reaches 95.63%. Our experimental results suggest that the study can effectively improve the utilization of glioma imaging data and the accuracy of intelligent diagnosis of glioma IDH1 mutation status.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321404 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21404&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321404

DOI: 10.1371/journal.pone.0321404

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0321404