EconPapers    
Economics at your fingertips  
 

A hybrid power load forecasting model using BiStacking and TCN-GRU

Jun Ma, Jishen Peng, Haotong Han, Liye Song and Hao Liu

PLOS ONE, 2025, vol. 20, issue 4, 1-27

Abstract: Accurate power load forecasting helps reduce energy waste and improve grid stability. This paper proposes a hybrid forecasting model, BiStacking+TCN-GRU, which leverages both ensemble learning and deep learning techniques. The model first applies the Pearson correlation coefficient (PCC) to select features highly correlated with the power load. Then, BiStacking is used for preliminary predictions, followed by a temporal convolutional network (TCN) enhanced by a gated recurrent unit (GRU) to produce the final predictions. The experimental validation based on Panama’s 2020 electricity load data demonstrated the effectiveness of the model, with the model achieving an RMSE of 29.1213 and an MAE of 22.5206, respectively, with an R² of 0.9719. These results highlight the model’s superior performance in short-term load forecasting, demonstrating its strong practical applicability and theoretical contributions.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321529 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21529&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321529

DOI: 10.1371/journal.pone.0321529

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0321529