EconPapers    
Economics at your fingertips  
 

Continuous emergence of phototaxis in Dictyostelium discoideum

Damien Genettais, Charles Bernard, Félix Geoffroy, Clément Nizak and Sandrine Adiba

PLOS ONE, 2025, vol. 20, issue 5, 1-17

Abstract: The evolutionary transition from uni- to multicellularity is associated with new properties resulting from collective cell behavior. The social amoeba Dictyostelium discoideum alternating between individual cells and multicellular forms of varying size provides a powerful biological system to characterize such emergent properties. Multicellular forms coined slugs have long been described as chemotactic towards cAMP, and also as phototactic. While chemotaxis is also well-documented at the single-cell level, which explains slug chemotaxis, we asked whether slug phototaxis is an emergent property of multicellularity. For this, we developed an automated microscopy setup to quantify and compare the migration trajectories of single cells and slugs moving in the dark or illuminated with lateral light. We find that single cells, either extracted from phototactic slugs or taken prior to multicellular aggregation, are not phototactic, implying that slug phototaxis results from interactions between cells that lack this property. Further, by analysing slugs composed of a varying number of cells, we find that phototaxis efficiency increases continuously with slug size. Cell-cell interactions combined with self-organization are thus key elements for this property to emerge.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321614 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21614&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321614

DOI: 10.1371/journal.pone.0321614

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-24
Handle: RePEc:plo:pone00:0321614