A dual-branch model combining convolution and vision transformer for crop disease classification
Qingduan Meng,
Jiadong Guo,
Hui Zhang,
Yaoqi Zhou and
Xiaoling Zhang
PLOS ONE, 2025, vol. 20, issue 4, 1-23
Abstract:
Computer vision holds tremendous potential in crop disease classification, but the complex texture and shape characteristics of crop diseases make disease classification challenging. To address these issues, this paper proposes a dual-branch model for crop disease classification, which combines Convolutional Neural Network (CNN) with Vision Transformer (ViT). Here, the convolutional branch is utilized to capture the local features while the Transformer branch is utilized to handle global features. A learnable parameter is used to achieve a linear weighted fusion of these two types of features. An Aggregated Local Perceptive Feed Forward Layer (ALP-FFN) is introduced to enhance the model’s representation capability by introducing locality into the Transformer encoder. Furthermore, this paper constructs a lightweight Transformer block using ALP-FFN and a linear self-attention mechanism to reduce the model’s parameters and computational cost. The proposed model achieves an exceptional classification accuracy of 99.71% on the PlantVillage dataset with only 4.9M parameters and 0.62G FLOPs, surpassing the state-of-the-art TNT-S model (accuracy: 99.11%, parameters: 23.31M, FLOPs: 4.85G) by 0.6%. On the Potato Leaf dataset, the model attains 98.78% classification accuracy, outperforming the advanced ResNet-18 model (accuracy: 98.05%, parameters: 11.18M, FLOPs: 1.82G) by 0.73%. The model proposed in this paper effectively combines the advantages of CNN and ViT while maintaining a lightweight design, providing an effective method for the precise identification of crop diseases.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321753 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21753&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321753
DOI: 10.1371/journal.pone.0321753
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().